ENS - Ecole Normale Supérieure
Back to top

Publications

Book chapter  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2021). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. Advances in Intelligent Systems and Computing (Vol. 1252, pp. 241-255). doi:10.1007/978-3-030-55190-2_19

Book chapter  

Koechlin, E. (2020). Executive Control and Decision-Making: a neural theory of prefrontal function. The Cognitive Neurosciences VI (pp. 451).

Reviewed conference proceeding  

Alemi, A., Machens, C., Denève, S. & Slotine, J. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, AAAI Press.

Book chapter  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Book chapter  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Book chapter  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Book chapter  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Book chapter  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Book chapter  

Caze, R., Humphries, M. & Gutkin, B. (2013). Dendrites enhance both single neuron and network computation. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Reviewed conference proceeding  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Monograph  

Gutkin, B. & Ahmed, S. (2012). Computational Neuroscience of Drug Addiction.

Book chapter  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Book chapter  

Gutkin, B. & Stiefel, K. (2007). Phase-resetting curves and neuromodulation of action potential dynamics in the cortex. (Vol. 40, pp. 14-15).