Gutkin, B. & Ahmed, S. (2012). Computational Neuroscience of Drug Addiction.
Book chapter
Caze, R., Humphries, M. & Gutkin, B. (2013). Dendrites enhance both single neuron and network computation. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer
Book chapter
Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).
Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)
Book chapter
Koechlin, E. (2020). Executive Control and Decision-Making: a neural theory of prefrontal function. The Cognitive Neurosciences VI (pp. 451).
Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer
Book chapter
Gutkin, B. & Stiefel, K. (2007). Phase-resetting curves and neuromodulation of action potential dynamics in the cortex. (Vol. 40, pp. 14-15).
Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).
Book chapter
Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer