ENS - Ecole Normale Supérieure
Back to top

Publications

Reviewed conference proceeding  

Alemi, A., Machens, C., Denève, S. & Slotine, J. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, AAAI Press.

Reviewed conference proceeding  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Book chapter  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2021). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. Advances in Intelligent Systems and Computing (Vol. 1252, pp. 241-255). doi:10.1007/978-3-030-55190-2_19

Book chapter  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Book chapter  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Book chapter  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Book chapter  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Book chapter  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Book chapter  

Caze, R., Humphries, M. & Gutkin, B. (2013). Dendrites enhance both single neuron and network computation. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Book chapter  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Book chapter  

Gutkin, B. & Stiefel, K. (2007). Phase-resetting curves and neuromodulation of action potential dynamics in the cortex. (Vol. 40, pp. 14-15).

Other  

Ting, C. , Palminteri, S., Engelmann, J. & Lebreton, M. (2019). Decreased confidence in loss-avoidance contexts is a primary meta-cognitive bias of human reinforcement learning. bioRxiv. doi:10.1101/593368

Other  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Other  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Other  
Other  

Recanatesi, S., Farrell, M., Lajoie, G., Denève, S., Rigotti, M. & Shea-Brown, E. (2018). Signatures and mechanisms of low-dimensional neural predictive manifolds. bioRxiv. doi:10.1101/471987

Other  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222

Other  

Lebreton, M. & Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? bioRxiv. doi:10.1101/036772

Other  

Tallon-Baudry, C. (2013). Catherine Tallon-Baudry. Current Biology, 23(14), R588-R590. doi:10.1016/j.cub.2013.06.010