ENS - Ecole Normale Supérieure
Back to top

Publications

Reviewed conference proceeding  

Alemi, A., Machens, C., Denève, S. & Slotine, J. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, AAAI Press.

Reviewed conference proceeding  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Other  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Other  

Lebreton, M. & Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? bioRxiv. doi:10.1101/036772

Reviewed conference proceeding  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2020). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. In Arai K., Kapoor S., Bhatia R. (Eds.), Vol. 1252: In IntelliSys 2020. Advances in Intelligent Systems and Computing, 241-255. doi:10.1007/978-3-030-55190-2_19

Other  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222

Other  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Other  
Other  

Recanatesi, S., Farrell, M., Lajoie, G., Denève, S., Rigotti, M. & Shea-Brown, E. (2018). Signatures and mechanisms of low-dimensional neural predictive manifolds. bioRxiv. doi:10.1101/471987

Other  

Ting, C. , Palminteri, S., Engelmann, J. & Lebreton, M. (2019). Decreased confidence in loss-avoidance contexts is a primary meta-cognitive bias of human reinforcement learning. bioRxiv. doi:10.1101/593368