ENS - Ecole Normale Supérieure
Back to top

Publications

Autres  

Lebreton, M. & Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? bioRxiv. doi:10.1101/036772

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Chapitre d'ouvrage  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Acte de conférence expertisé  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Autres  

Recanatesi, S., Farrell, M., Lajoie, G., Denève, S., Rigotti, M. & Shea-Brown, E. (2018). Signatures and mechanisms of low-dimensional neural predictive manifolds. bioRxiv. doi:10.1101/471987

Autres  
Chapitre d'ouvrage  

Gutkin, B. & Stiefel, K. (2007). Phase-resetting curves and neuromodulation of action potential dynamics in the cortex. (Vol. 40, pp. 14-15).

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Autres  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Acte de conférence expertisé  

Alemi, A., Machens, C., Denève, S. & Slotine, J. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, AAAI Press.

Chapitre d'ouvrage  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2021). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. Advances in Intelligent Systems and Computing (Vol. 1252, pp. 241-255). doi:10.1007/978-3-030-55190-2_19

Chapitre d'ouvrage  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Chapitre d'ouvrage  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Chapitre d'ouvrage  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Chapitre d'ouvrage  

Caze, R., Humphries, M. & Gutkin, B. (2013). Dendrites enhance both single neuron and network computation. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Autres  

Ting, C. , Palminteri, S., Engelmann, J. & Lebreton, M. (2019). Decreased confidence in loss-avoidance contexts is a primary meta-cognitive bias of human reinforcement learning. bioRxiv. doi:10.1101/593368

Autres  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Autres  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222