ENS - Ecole Normale Supérieure
Back to top

Publications

Acte de conférence expertisé  

Alemi, A., Machens, C., Denève, S. & Slotine, J. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, AAAI Press.

Acte de conférence expertisé  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Acte de conférence expertisé  

Hicheur, H., Kadone, H., Grèzes, J. & Berthoz, A. (2013). Perception of emotional gaits using avatar animation of real and artificially synthesized gaits. In 5th Biannual Conference of the Humaine-Association on Affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland, IEEE, 460-466. doi:10.1109/ACII.2013.82

Autres  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Autres  

Lebreton, M. & Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? bioRxiv. doi:10.1101/036772

Autres  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222

Autres  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Autres  
Autres  

Recanatesi, S., Farrell, M., Lajoie, G., Denève, S., Rigotti, M. & Shea-Brown, E. (2018). Signatures and mechanisms of low-dimensional neural predictive manifolds. bioRxiv. doi:10.1101/471987

Autres  

Ting, C. , Palminteri, S., Engelmann, J. & Lebreton, M. (2019). Decreased confidence in loss-avoidance contexts is a primary meta-cognitive bias of human reinforcement learning. bioRxiv. doi:10.1101/593368