Alemi, A., Machens, C., Denève, S. & Slotine, J. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, AAAI Press.
Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.
Deperrois, N. & Gutkin, B. (2018). Nicotinic and Cholinergic Modulation of Reward Prediction Error Computations in the Ventral Tegmental Area: a Minimal Circuit Model. bioRxiv, 423806. doi:10.1101/423806
Dumont, G. & Gutkin, B. (2018). Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits. arXiv , 1812.03455
Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855
Lebreton, M. & Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? bioRxiv. doi:10.1101/036772
Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222
Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925
Novikov, N. & Gutkin, B. (2018). Role of NMDA conductance in average firing rate shifts caused by external periodic forcing. arXiv , 1812.03609
Recanatesi, S., Farrell, M., Lajoie, G., Denève, S., Rigotti, M. & Shea-Brown, E. (2018). Signatures and mechanisms of low-dimensional neural predictive manifolds. bioRxiv. doi:10.1101/471987
Rooy, M., Koukouli, F., Maskos, U. & Gutkin, B. (2018). Nicotinic modulation of hierarchal inhibitory control over prefrontal cortex resting state dynamics: modeling of genetic modification and schizophreniarelated pathology. bioRxiv, 301051. doi:10.1101/301051
Ting, C. , Palminteri, S., Engelmann, J. & Lebreton, M. (2019). Decreased confidence in loss-avoidance contexts is a primary meta-cognitive bias of human reinforcement learning. bioRxiv. doi:10.1101/593368