ENS - Ecole Normale Supérieure
Back to top

Publications

Autres  

Ting, C. , Palminteri, S., Engelmann, J. & Lebreton, M. (2019). Decreased confidence in loss-avoidance contexts is a primary meta-cognitive bias of human reinforcement learning. bioRxiv. doi:10.1101/593368

Autres  

Sidarus, N., Haggard, P. & Beyer, F. (2018). How social contexts affect cognition: mentalizing interferes with sense of agency during voluntary action. PsyArXiv. doi:10.31234/osf.io/wj3ep

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Autres  
Autres  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Acte de conférence expertisé  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2020). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. In Arai K., Kapoor S., Bhatia R. (Eds.), Vol. 1252: In IntelliSys 2020. Advances in Intelligent Systems and Computing, 241-255. doi:10.1007/978-3-030-55190-2_19

Autres  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222

Autres  

Lebreton, M. & Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? bioRxiv. doi:10.1101/036772

Autres  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Chapitre d'ouvrage  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Ouvrage  

Gutkin, B. & Ahmed, S. (2012). Computational Neuroscience of Drug Addiction.

Chapitre d'ouvrage  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Chapitre d'ouvrage  

Gutkin, B. & Stiefel, K. (2007). Phase-resetting curves and neuromodulation of action potential dynamics in the cortex. (Vol. 40, pp. 14-15).

Chapitre d'ouvrage  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Chapitre d'ouvrage  

Garcia, B., Cerrotti, F. & Palminteri, S. (2021). The description-experience gap: a challenge for the neuroeconomics of decision-making under uncertainty. Existence and prevalence of economic behaviours among non-human primates (The Royal Society ed., Vol. 376).Elsa Addessi, Thomas Boraud and Sacha Bourgeois-Gironde. doi:10.1098/rstb.2019.0665

Chapitre d'ouvrage  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Acte de conférence expertisé  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Chapitre d'ouvrage  

Caze, R., Humphries, M. & Gutkin, B. (2013). Dendrites enhance both single neuron and network computation. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer