1. **Covariance and Correlation.** Assume that we have recorded two neurons in the two-alternative-forced choice task discussed in class. We denote the firing rate of neuron 1 in trial i as $r_{1,i}$ and the firing rate of neuron 2 as $r_{2,i}$. We furthermore denote the averaged firing rate of neuron 1 as \bar{r}_1 and of neuron 2 as \bar{r}_2. Let us “center” the data by defining two data vectors

$$
\mathbf{x} = \begin{pmatrix}
 (r_{1,1} - \bar{r}_1) \\
 (r_{1,2} - \bar{r}_1) \\
 (r_{1,3} - \bar{r}_1) \\
 \vdots \\
 (r_{1,N} - \bar{r}_1)
\end{pmatrix},
\mathbf{y} = \begin{pmatrix}
 (r_{2,1} - \bar{r}_2) \\
 (r_{2,2} - \bar{r}_2) \\
 (r_{2,3} - \bar{r}_2) \\
 \vdots \\
 (r_{2,N} - \bar{r}_2)
\end{pmatrix}.
$$

(a) Show that the variance of the firing rates of the first neuron is

$$
\text{Var}(r_1) = \frac{1}{N-1} \| \mathbf{x} \|^2.
$$

(b) Compute the cosine of the angle between \mathbf{x} and \mathbf{y}. What do you get?

(c) What are the maximum and minimum values that the correlation coefficient between r_1 and r_2 can take? Why?

(d) What do you think the term “centered” refers to?

2. **Bayes’ theorem.** The theorem of Bayes summarizes all the knowledge we have about the stimulus by observing the responses of a set of neurons, independently of the specific decoding rule. To get a better intuition about this theorem, we will look at the motion discrimination task again and compute the probability that the stimulus moved to the left (\leftarrow) or right (\rightarrow). For a stimulus $s = \{\leftarrow, \rightarrow\}$, and a firing rate response r of a single neuron, Bayes’ theorem reads

$$
p(s|r) = \frac{p(r|s)p(s)}{p(r)}.
$$

Here, $p(r|s)$ is the probability that the firing rate is r if the stimulus was s. The respective distribution can be measured and we assume that it follows a Gaussian probability density
with mean \(\mu_s \) and standard deviation \(\sigma \),

\[
p(r|s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(r - \mu_s)^2}{2\sigma^2} \right)
\]

The relative frequency with which the stimuli (leftward or rightward motion, \(\leftarrow \) or \(\rightarrow \)) appear is denoted by \(p(s) \), often called the prior probability or, for short, the prior. The distribution \(p(r) \) denotes the probability of observing a response \(r \), independent of any knowledge about the stimulus.

(a) How can you calculate \(p(r) \)? What shape does it have?

(b) The distribution \(p(s|r) \) is often called the posterior probability or, for short, the posterior. Calculate the posterior for \(s = \leftarrow \) and sketch it as a function of \(r \), assuming a prior \(p(\leftarrow) = p(\rightarrow) = 1/2 \). Draw the posterior \(p(\rightarrow|r) \) into the same plot.

(c) What happens if you change the prior? Investigate how the posterior changes if \(p(\leftarrow) \) becomes much larger than \(p(\rightarrow) \) and vice versa. Make a sketch similar to (b).

(d) Let us assume that we decide for leftward motion whenever \(r > \frac{1}{2}(\mu_{\leftarrow} + \mu_{\rightarrow}) \). Interpret this decision rule in the plots above. How well does this rule do depending on the prior? What do you lose when you move from the full posterior to a simple decision (decoding) rule?

3. **Linear discriminant analysis (advanced):** Let us redo the calculations for the case of \(N \) neurons. If we denote by \(r \) the vector of firing rates, Bayes’ theorem reads:

\[
p(s|r) = \frac{p(r|s)p(s)}{p(r)}
\]

We assume that the distribution of firing rates again follows a Gaussian so that

\[
p(r|s) = \frac{1}{(2\pi)^{N/2}\sqrt{\det C}} \exp \left(-\frac{1}{2}(r - \mu_s)^T C^{-1}(r - \mu_s) \right)
\]

where \(\mu_s \) denotes the mean of the density for stimulus \(s = \{\leftarrow, \rightarrow\} \), and \(C \) is the covariance matrix, assumed identical for both stimuli.

(a) Compute the log-likelihood ratio

\[
l(r) = \log \frac{p(r|\leftarrow)}{p(r|\rightarrow)}
\]

(b) Assume that \(l(r) = 0 \) is the decision boundary, so that any firing rate vector \(r \) giving a log-likelihood ratio larger than zero is classified as coming from the stimulus \(\leftarrow \). Compute a formula for the decision boundary. What shape does this boundary have?

(c) Assume that \(p(\leftarrow) = p(\rightarrow) = 1/2 \). Assume we are analyzing two neurons with uncorrelated activities, so that the covariance matrix is

\[
C = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}
\]

Sketch the decision boundary for this case.