Exercise Sheet 2 — 26 March 2019
Please submit your solution in the next class

(1) **Temporal-difference learning with discounting.** In many instances, immediate rewards are worth more than those in the future. To take this observation into account, the value \(V(s_t) \) of a particular state \(s_t \) is not the sum of all future rewards, but rather the sum of all future, discounted rewards,

\[
V(s_t) = r(s_t) + \gamma r(s_{t+1}) + \gamma^2 r(s_{t+2}) + \ldots = \sum_{\tau=0}^{\infty} \gamma^\tau r(s_{t+\tau})
\]

where \(0 < \gamma < 1 \). Here \(s_t \) is the state at time \(t \), i.e., the state in which the agent is right now, \(s_{t+1} \) the state that the agent will move to next and so on. Following the derivation in the lecture, show that the temporal-difference-learning rule in this case is given by

\[
V(s_t) \rightarrow V(s_t) + \varepsilon (r(s_t) + \gamma V(s_{t+1}) - V(s_t))
\]

(2) **Models for the value function.** In the lecture, we talked about the necessity to introduce models for the value of a state, so that one could properly generalize to new, unseen situations. One very simple model is given by the value function \(V(u) = w \cdot u \) where \(u \) is a vector of stimuli that could either be present (1) or absent (0).

(a) Take the example of two stimuli, \(u = (u_1, u_2) \). Let us assume that the subject (agent) has already learned the value of a state in which the first stimulus is present, and the value of a state in which the second stimulus is present. The learned values are given by

\[
V(u = (1, 0)) = \alpha \\
V(u = (0, 1)) = \beta
\]

What are the values of the parameters \(w = (w_1, w_2) \) that the agent has learnt? Now we assume that the agent, for the very first time, runs into a state in which both stimuli are present. What is the value of this state? What if we now add some uncertainty. What would be the value of a state where the first stimulus has 50% chance of being present and the second stimulus has 10%? In what situation do you think this sort of a more generalized model that you just came up with would not make much sense?

(b) **Advanced:** Derive the temporal-difference learning rule for the parameters \(w \) that need to be learned if the value function is \(V(u) = w \cdot u \). Hint: Start from a loss function - what would be a suitable choice? Can you also derive a learning rule if the value function were given by \(V(u) = f(w \cdot u) \) with \(f() \) being a known (non-linear) function?